
N91"23971

Building a Generalized Distributed System Model

R. Mukkamala

E.C. Foudriat

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

Annual Report and Renewal Request

Abstract

The key elements in the first year (1990-91) of our project were:

• Investigate the effects of modeling on distributed system performance

predictions.

• Look at possible graphical interfaces to the proposed distributed pro-

totype and simulator system.

• Conduct preliminary studies towards the design of a generalized dis-

tributed system.

In the second year of the project (1991-92), we propose to

• Develop detailed designs for the prototype.

• Implement and test the system.

• Conduct further studies on modeling distributed systems.



1 Introduction

In the 1990-91 proposal, we discussed the need for building a modeling tool

for both analysis and design of distributed systems. To this end, we have

been considering different design architectures for the modeling tool. Since

many of the research institutions have access to networks of workstations, we

have decided to build a tool running on top of the workstations to function

as a prototype as well as a distributed simulator for a computing system.

In addition, we have been investigating the effects of system modeling

on performance prediction in distributed systems. While some performance

measures such as the average number of participating node set size of a

distributed transaction is not very sensitive to the underlying model, mea-

sures such as transaction commutativity measures are quite sensitive to the

evaluation models.

We have also considered the effects of static locking and deadlocks on the

performance predictions of distributed transactions. While the probability

of deadlock is considerably small in a typical distributed system, its effects

on performance could be significant.

In this report, we summarize our progress in these three areas and de-

scribe the details of the proposed work.

2 Distributed System Model: Prototype/Simulator

The main goals of our efforts in building a general tool for simulation and

prototyping of distributed systems are:

• A framework to experiment with distributed algorithms/systems.

• Implement in terms of basic primitives (e.g., RPC, reliable communi-

cation).

• A good user interface - preferably with graphic and mouse functions.

• Provisions to include user specific code for different components.

• A library of procedures representing typical options for components

(e.g. two-phase locking).

• A base for distributed simulation as well as prototyping.

• Efficient mechanisms to monitor and display the activities.

2



• Powerfulperformanceanalysistools.

To this end, westarted lookingat a transactionorienteddistributed
system. Sinceour aim is to providea generalframeworkrather than to
providea solutionto a particularmodel,our goal is to providesomeof
the basicprimitivesat the bottomlayer,andlet the userbuild the needed
upper levelsoftware.To makethe prototype usablefor a noviceuser,we
proposeto provideagraphicinterfacethroughwhicha usercanspecifythe
systemconfiguration.As anexampleapplication,weconsidereddistributed
databasesystemmodeling.As shownin Figure1, we identified seven ma-

jor components. Each of these components can be further described in a

detailed model. For example, the local manager can be modeled as a coor-

dinator of local concurrency control manager and the transaction resource

manager. Given a set of components, the control structure of the system

can be represented through directional links. Figure 2 illustrates one such
control structure.

After considering several alternates, we decided to base the graphic inter-
face on the lines of the MIT Network simulator. The MIT simulator is devel-

oped at Massachusetts Institute of Technology with funding from DARPA.

Even though it is intended for simulating communication networks, we have

decided to adopt its graphic interfacing routines for our distributed simula-

tor. Since the source code (in C) is available, we are modifying this code

to suit our needs. Some of its distinguishing characteristics of the network
simulator are:

• Internetwork simulator

• Components include gateways, network links, hosts, TCPs and users.

• Network configuration is displayed on the screen.

• User can control the simulation.

• Network configuration can be modified with the mouse.

• Other simulation parameters can be changed on-line using the mouse.

• Network configuration can be saved for later use.

• Several performance measures may be printed.



Figure I

Distributed System Model

w

Global

manager

Ditribution
control

Local

manager

Site
Recovery

manage r

Resource

manager

Site i

Resource

(e.g. database)

w

Global

manager

Ditribution
control

Local

manager

L Site
Recovery

manager

Resource

manager

Site j

Resource

(e.g. database)



Site i

Site

MG

Figure 2

User

Transaction

GTM

Replica control

COUIlTI.

manager

Resource

MG

Global CCM

I

/
/
/

/
/

/
/
/

I
/
/
I
/
/
/
/

Site j

Network

Replica control

GTM

m_

manager



Since process communication is a basic primitive needed in distributed

systems, we have decided to provide this as a basic mechanism in our system.

Currently, we are experimenting with the Sun RPC system calls to design a

high-level primitive. RPC has several advantages including:

• Hiding details of network programming

• Availability of library routines

• Hiding the operating system dependencies

• Availability of the standard data representation using XDR format

which allows a simple way of transferring data.

3 Effects of Modeling on Performance Predic-

tions

As a second part of our study, we have conducted investigations to deter-

mine the impact of modeling on distributed system performance. Here, we
summarize the results of two such studies:

Study 1: Effect of Data Distribution Models on Transaction Com-

mutativity [2]. Recognizing commutativity among transactions appears

to reduce the number of rollbacks (at the time of merge) in a partitioned

distributed database system [1]. The main objective of this study is to de-

termine the impact of data distribution modeling on the evaluation of the

benefits due to commutativity. We studied the effects of six distinct data
distribution models on the evaluation of the number of rollbacks. We de-

rived closed form expressions for five of the six models, and used simulation

for the sixth model. The conclusions from this study are summarized as
foUows.

• Random data models that assume only average information about the

system result in conservative estimates of system throughput.

Adding more system information does not necessarily lead to better

approximations. In this paper, the system information is increased

from model 6 to model 2. Even though this increases the computa-

tional complexity, it does not result in any significant improvement in
the estimation of the number of rollbacks.

m



Transaction commutativity appears to significantly reduce transaction

rollbacks in a partitioned distributed database system. This fact is

only evident from the analysis of model I. On the other hand, when

we look at models 2-6, it is possible to conclude that commutativity is

not helpful unless it is extremely high. Thus, conclusions from model

1 and models 2-6 are contradictory.

The replication distribution (i.e., the actual number of copies for each

object) seems to effect the evaluations significantly. Thus, accurate

modeling of this distribution is vital to evaluation of rollbacks.

Study 2: Effect of Data Distribution and Reliability Models on

Transaction Availability [3]. In this study, we selected three abstractions

for data distribution modeling and three for node reliability modeling, and

constructed six system models. Here, transaction availability is defined as

the probability with which all data copies required by a transaction are

available at the beginning of its execution. As before, we could derive closed

form expressions with five of the six models (using probabilistic analysis),
and used simulation for the other model. A transaction was characterized

by the number of data objects that it accesses, s. The conclusions derived

from this study are summarized as follows.

• By choosing a proper distributed database model, the computational

complexity of transaction availability evaluations can be significantly
reduced.

• For values of s < 10, all models result in almost the same transaction

evaluation.

The degree of replication of individual (or group) data objects seems

to have a significant effect on transaction availabilities. Thus, when

different data objects have different copies, adopting average degree of

replication at the system level may not result in accurate availability
evaluations.

The actual distribution of data object copies has some, if not signifi-

cant, impact on availability evaluation.

In a heterogeneous environment where different nodes may have dif-

ferent reliabilities, it is sufficient to represent each node by the average

node reliability, without affecting the availability evaluations.



Havingconducted these studies, we conclude that

• Adopting simple models may drastically reduce the complexity of met-
ric evaluations.

• Choosing analytically tractable models enables easy interpretation of

functional dependencies.

By choosing inappropriate models, for either analytical tractability or

conceptual simplicity, it is possible to arrive at incorrect conclusions.

Model choice is highly dependent on the metric. While a simple model

serves well for one metric, it may be insufficient for another metric.

4 Determining the Effects of Locking on Distributed
Transactions

Deadlocks are known to deteriorate performance in both centralized and

distributed database systems [4,5]. In spite of this, several performance

studies have ignored the deadlock problem in their analyses [6]. In [4], Shyu

and Li proposed an elegant technique to evaluate the response time and

throughput of transactions in a non-replicated DDS. Assuming exclusive

locking (i.e., only write operations), they model the queue of lock requests

at an object as a M/M/1 queue. This results in a closed-form for the waiting

time distribution at a node, expressed in terms of the average rates of arrivals

of requests and the average lock-holding time.

In general, a database transaction reads from a set of data objects (the

read-set) and writes on to a set of data objects (the write-set). In this

paper, we consider both the the read and the write operations of database

transactions, and propose a technique for performance evaluation.

We make the following observations from evaluations made with our

technique.

• As expected, the presence of shared locks has a substantial impact on

the probability of deadlock occurrence. When only 1/3 of the accessed

data objects are updated, the probability of deadlock is considerably

small as compared to when all objects are updated.

• The observations about the deadlock probabilities are also valid for

restart probabilities.

6



k

'%_.

Transaction response times are also quite sensitive to the ratio of

shared locks. Here, we compare the response times when deadlocks

are ignored with those obtained when deadlocks are considered. The

effect of deadlocks is more predominant at higher transaction loads

and with smaller values of read ratio. When 1/3 of the accessed ob-

jects are updated, the effect of deadlocks is not significant on response
time.

The effect of deadlocks on response time is decreased with the increase

in the number of data items. Obviously, this is due to the decrease in

probability of conflicts and hence a decrease in deadlock occurrence.

When only 1/3 of the accessed data are updated, this effect is almost

insignificant. When 2/3 of the accessed data are updated, deadlocks

seems to have a noticeable effect on response time.

When a small number of data objects are accessed, the probability of

deadlock is negligible, and hence its effect on response time is small.

When more data objects are accessed, the effect of deadlocks on re-

sponse times is significant.

5 Summary of Accomplishments in 1990-91

We have published the results of our research (since August 1990) in two

conferences. In addition, two papers are submitted for publication in inter-

national journals. These are:

1. Y. Kuang and R. Mukkaxnala, "Performance Analysis of Static Lock-

ing in Replicated Distributed Database Systems," Proc. Southeastcon

1991, pp. 698-701.

2. Y. Kuang and R. Mukkamala, "A Note on the Performance Analysis of

Static Locking in Distributed Database Systems", Submitted to IEEE

Trans. Computers, December 1990.

3. R. Mukkamala, "Effects of Distributed Database Modeling on Evalu-

ation of Transaction Rollbacks," Proc. WSC'91, December 1990, pp.
839-845.

4. R. Mukkamala, "Measuring the Effects of Distributed Database Mod-

els On Transaction Availability Measures," Submitted to Performance

Evaluation Journal, March 1991.

7



In addition,ourcurrentworkonbuildingtheprototypefor a distributed
systemshouldresultin severalconferenceandjournal papersin 1991-92.

6 Proposed Research Efforts in 1991-92

During the next grant period (August 1991 to July 1992), we propose to

continue the study and development of the distributed prototyping and sim-

ulator system. The main main problems that we need to solve in this period

are:

• Complete the graphic interface design and implement it on Sun work-

stations.

Investigate efficient means of offering flexible as well as efficient means

of specifying interfacing between system components. We expect this

phase to consume considerable time.

Design, build, and test a specific system using the primitives offered

by the system. Experiences from building a specific system should aid

us in developing a generalized prototyping tool.

We propose to use the prototype to evaluate the performance of several
distributed mutual exclusion policies. Such a study may result in the

development of new policies.

• We propose to do further investigations in modeling of distributed

systems and determine their impact on predictive analysis tools.

References

[1] S. Jajodia and P. Speckman, "Reduction of conflicts in partitioned
databases," Proc. 19th Annual Con. on Information Sciences and Sys-

tems, 1985, pp. 349-335.

[2] R. Mukkamala, "Effects of Distributed Database Modeling on Evalu-
ation of Transaction Rollbacks," Pro(:. WSC'91, December 1990, pp.

839-845.

[3] R. Mukkamala, "Measuring the Effects of Distributed Database Mod-

els On Transaction Availability Measures," Submitted for publication,

March 1991.

'w



[4] S.-C. Shyu and V. O. K. Li, "Performance analysis of static locking in

distributed database systems," IEEE Trans. Computers, vol. 39, no. 6,

pp. 741-751, June 1990.

[5] Y. C. "Fay, R. Suri, and N. Goodman, "A mean value performance

model for locking in databases: The no-waiting case," J. A CM, vol. 32,

no. 3, pp. 618-651, July 1985.

[6] M. Singhal and A. K. Agrawala, "Performance analysis of an algorithm

for concurrency control in replicated database systems," Proc. A CM

SIGMETRICS Conf. Measurement Modeling Comput. Syst., 1986, pp.

159-169.

9



APPENDIX


